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Chapter 9

Tight binding Model



CALCULATION OF ENERGY BANDS

Few masters of energy band calculation learned their methods entirely
from books. Band calculation is a craft learned by experience, often developed
in groups, and needing access to computers. Wigner and Seitz, who performed
the first serious band calculations in 1933, refer to afternoons spent on the
manual desk calculators of those days, using one afternoon for a trial wavefunc-
tion. Modern computers have eased the pain. However, the formulation of the
problem requires great care, and the computer programs are not trivial.

Here we limit ourselves to three methods useful to beginners: the tight-
binding method, usetul for interpolation; the Wigner-Seitz method, useful for
the visualization and understanding of the alkali metals; and the pseudopoten-
tial method, utilizing the general theory of Chapter 7, which shows the simplic-
ity of many problems. Reviews of these and other methods are cited at the end
of this chapter.



Tight Binding Method for Energy Bands

Let us start with neutral separated atoms and watch the changes in the
atomic energy levels as the charge distributions of adjacent atoms overlap when
the atoms are brought together to form a crystal. Consider two hydrogen
atoms, each with an electron in the 1s ground state. The wavefunctions {4, ¥p
on the separated atoms are shown in Fig. 16a.

As the atoms are brought together, their wavefunctions overlap. We con-
sider the two combinations 44 *= 5. Each combination shares an electron with
the two protons, but an electron in the state ¥4 + ¥ will have a somewhat
lower energy than in the state ¢4 — 3.

In ¢4 + Y the electron spends part of the time in the region midway
between the two protons, and in this region it is in the attractive potential of
both protons at once, thereby increasing the binding energy. In 4, — 5 the

probability density vanishes midway between the nuclei; an extra binding does
not appear.
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Figure 16 (a) Schematic drawing of wavefunctions of electrons on two hydrogen atoms at large
separation. (b) Ground state wavefunction at closer separation. (c) Excited state wavefunction.



As two atoms are brought together, two separated energy levels are
formed for each level of the isolated atom. For N atoms, N orbitals are formed
for each orbital of the isolated atom (Fig. 17).

As free atoms are brought together, the coulomb interaction between the
atom cores and the electron splits the energy levels, spreading them into

bands. Each state of given quantum number of the free atom is spread in the

crystal into a band of energies. The width of the band is proportional to the

strength of the overlap interaction between neighboring atoms.

There will be bands formed from p, d, . . . states ({ = 1,2, . . .) of the free
atoms. States degenerate in the free atom will form different bands. Each will
not have the same energy as any other band over any substantial range of the
wavevector. Bands may coincide in energy at certain values of k in the Brillouin

zone.



=
N )
T T

o
2
T

Energy, in Rydbergs
|
T

Free

/_ atom

|
o
=

I

_1.8 -

-2.6[-

-3.41

-4.2-
L ! L 1 I L1 ] ! 1 J
0 1 2 3 4 5

Nearest neighbor distance, in Bohr radii

Figure 17 The ls band of a ring of 20 hydrogen atoms; the one-electron energy calculated in the
tight-binding approximation with the nearest-neighbor overlap integral of Eq. (9).
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Figure 10.4 Atoms far apart ----- atoms closer

(a) Schematic representation of nondegenerate electronic levels in
an atomic potential. (b) The energy levels for N such atoms in a
periodic array, plotted as a function of mean inverse interatomic
spacing. When the atoms are far apart (small overlap integrals)
the levels are nearly degenerate, but when the atoms are closer
together (larger overlap integrals), the levels broaden into bands.



The approximation that starts out from the wavefunctions of the free atoms
is known as the tight binding approximation or the LCAO (linear combination

of atomic orbitals) approximation. The approximation is quite good for the inner
electrons of atoms, but it is not often a good description of the conduction

electrons themselves. It is used to describe approximately the d bands of the

transition metals and the valence bands of diamondlike and inert gas crystals.

Suppose that the ground state of an electron moving in the potential U(r) of
an isolated atom is ¢(r), an s state. The treatment of bands arising from degen-
erate (p,d, . . .) atomic levels is more complicated. If the influence of one atom
on another is small, we obtain an approximate wavefunction for one electron in
the whole crystal by taking

dlr) = 2 Cigplr — 1) (4)

where the sum is over all lattice points. We assume the primitive basis contains
one atom. This function is of the Bloch form (7.7) if Cy; = N~Y2 % which
gives, for a crystal of N atoms,

dlr) = N7V2 X exp(ik - r,)p(r — 1)) . 5)




We prove (5) is of the Bloch form. Consider a translation T connecting two
lattice points:

h(r + T) = N~V2 E exp(ik - rj)o(r + T — 1)
= exp(ik - T) N72 2, explik - (t; = Tlo[r — ; = T)]  (6)

= exp(ik - T)Y(r) ,

exactly the Bloch condition.

We find the first-order energy by calculating the diagonal matrix elements
of the hamiltonian of the crystal:

(KH[k) = N7 2, 2, explik - (r; — r,)] (@mlH|@)) (7)

where ¢,, = ¢(r — r,,). Writing p,, = r,, — 1},

WHI) = 3 exp(—ik - pn) | 4V ¢ — pu)Hol) ®



We now neglect all integrals in (8) except those on the same atom and

those between nearest neighbors connected by p. We write

JdV ¢*(r)He(r) = —a 5 | | [ dV ¢*(r — p)He(r) = —y

9)

N .

and we have the first-order energy, provided (klk) = 1:

(KHIK) = —a — y 2, exp(—ik * pn) = € .

(10)

The dependence of the overlap energy y on the interatomic separation p
can be evaluated explicitly for two hydrogen atoms in ls states. In rydberg

energy units, Ry = me*/2A%, we have

¥(Ry) = 2(1 + plao) exp(—p/ay) ,

(11)

where ag = A%/me?. The overlap energy decreases exponentially with the sepa-

ration.



For a simple cubic structure the nearest-neighbor atoms are at
Pm=(%xa,0,0) ; (0,%£a,0) ; (0,0,%a) , (12)
so that (10) becomes

e, = —a — 27y(cos ka + cos k,a + cos k.a) . (13)

Thus the energies are confined to a band of width 12y. The weaker the overlap,
the narrower is the energy band. A constant energy surface is shown in Fig. 15.
For ka < 1, ¢ = —a — 6y + vyk%a®. The effective mass is m* = #2/2ya®. When
the overlap integral vy is small, the band is narrow and the effective mass is
high.
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Figure 15 Constant energy surface in the Brillouin zone of a simple cubic lattice, for the assumed

energy band €, = —a — 2vy(cos k.a + cos k,a + cos k.a). (a) Constant energy surface € = —a. The

filled volume contains one electron per primitive cell. (b) The same surface exhibited in the peri-
odic zone scheme. The connectivity of the orbits is clearly shown. Can you find electron, hole, and
open orbits for motion in a magnetic field Bz? (A. Sommerfeld and H. A. Bethe.)



We considered one orbital of each free atom and obtained one band €. The
number of orbitals in the band that corresponds to a nondegenerate atomic
level is 2N, for N atoms. We see this directly: values of k within the first
Brillouin zone define independent wavefunctions. The simple cubic zone has
—ala < k, < mla, etc. The zone volume is 87°/a®. The number of orbitals
(counting both spin orientations) per unit volume of k space is V/47>, so that the
number of orbitals is 2V/a®. Here V is the volume of the crystal, and 1/a® is the
number of atoms per unit volume. Thus there are 2N orbitals.

For the bce structure with eight nearest neighbors,

ex = —a — 8y cos 3k.a cos 3k,a cos 3k.a . (14)

For the fcc structure with 12 nearest neighbors,

e = —a — 4vy(cos zk,a cos 3k.a + cos zk.a cos 3k.a +
cos zk.a cos zk,a) .| (15)

A constant energy surface is shown in Fig. 18.
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Figure 18 A constant energy surface of an fcc
crystal structure, in the nearest-neighbor tight-
binding approximation. The surface shown has
e=—a+ 2y
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The coefficients (10.16) to (10.18) may be simplified by appealing to certain sym-
metries. Since ¢ is an s-level, ¢(r) is real and depends only on the magnitude
r. From this it follows that «(—R) = o(R). This and the inversion symmetry of
the Bravais lattice, which requires that AU(—r) = AU(r), also imply that y(—R) =
y(R). We ignore the terms in « in the denominator of (10.15), since they give small
corrections to the numerator. A final simplification comes from assuming that only
nearest-neighbor separations give appreciable overlap integrals.

Putting these observations together, we may simplify (10.15) to

&k) = E, — p— Y p(R)cosk - R, (10.19)

where the sum runs only over those R in the Bravais lattice that connect the origin to

its nearest neighbors.
To be explicit, let us apply (10.19) to a face-centered cubic crystal. The 12 nearest

neighbors of the origin (see Figure 10.3) are at

R =2(£1, 1,0, S(£L0,£1), 20 L, £1) (10.20)
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Figure 10.3
The 12 nearest neighbors of the origin in a face-centered cubic
lattice with conventional cubic cell of side a.

Ifk = (k,, k,, k.), then the corresponding 12 values of k - R are
a 4
kR = i(iki’ +k;), Li=XViV2:2 % (10.21)

Now AU(r) = AU(x, y, z) has the full cubic symmetry of the lattice, and is therefore
unchanged by permutations of its arguments or changes in their signs. This, together
with the fact that the s-level wave function ¢(r) depends only on the magnitude of r,
implies that y(R) is the same constant y for all 12 of the vectors (10.20). Consequently,
the sum in (10.19) gives, with the aid of (10.21),



&k) = E; — B — 4y(cos 3k.a cos zk,a
+ cos 3kya cos 3k,a + cos 3k,a cos 3k.a), (10.22)

where |
¢ R J‘dr ¢*(x9 Vs Z) AU(X, Vs Z) d)('x = %aa Y = %aa Z)‘ (10'23)

Equation (10.22) reveals the characteristic feature of tight-binding energy bands:
The bandwidth—i.e., the spread between the minimum and maximum energies in
the band—is proportional to the small overlap integral y. Thus the tight-binding

bands are narrow bands, and the smaller the overlap, the narrower the band. In the
limit of vanishing overlap the bandwidth also vanishes, and the band becomes N-fold
degenerate, corresponding to the extreme case in which the electron simply resides
on any one of the N isolated atoms. The dependence of bandwidth on overlap integral

is illustrated in Figure 10.4.
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Figure 10.4

(a) Schematic representation of nondegenerate electronic levels in
an atomic potential. (b) The energy levels for N such atoms in a
periodic array, plotted as a function of mean inverse interatomic
spacing. When the atoms are far apart (small overlap integrals)
the levels are nearly degenerate, but when the atoms are closer
together (larger overlap integrals), the levels broaden into bands.



In addition to displaying the effect of overlap on bandwidth, Eq. (10.22) illustrates
several general features of the band structure of a face-centered cubic crystal that are
not peculiar to the tight-binding case. Typical of these are the following:

1. In the limit of small ka, (10.22) reduces to:
&Kk) = E, — B — 12y + yk?a>. (10.24)

This is independent of the direction of k—i.e., the constant-energy surfaces in
the neighbourhood of k = 0 are spherical.!®

2. If & is plotted along any line perpendicular to one of the square faces of the first
Brillouin zone (Figure 10.5), it will cross the square face with vanishing slope
(Problem 1).

S

Figure 10.5
The first Brillouin zone for face-centered cubic crystals. The point I

is at the center of the zone. The names K, L, W, and X are widely
\ used for the points of high symmetry on the zone boundary.

If & is plotted along any line perpendicular to one of the hexagonal faces of the
first Brillouin zone (Figure 10.5), it need not, in general, cross the face with

vanishing slope (Problem 1).*!



If the y;; are small, then the bandwidth is correspondingly small. As a rule of
thumb, when the energy of a given atomic level increases (i.e., the binding energy
decreases) so does the spatial extent of its wave function. Correspondingly, the low-
lving bands in a solid are very narrow, but bandwidths increase with mean band
f:ngrgy. [n metals the highest band (or bands) are very broad. since the spatial ranges
of the highest atomic levels are comparable to a lattice constant, and the tight-binding
approximation is then of doubtful validity.

3. Although the tight-binding wave function (10.6) is constructed out of localized
atomic levels ¢, an electron in a tight-binding level will be found, with equal prob-
ability, in any cell of the crystal, since its wave function (like any Bloch wave function)
changes only by the phase factor ¢* " ® as one moves from one cell to another a distance
R away. Thus as r varies from cell to cell, there is superimposed on the atomic struc-
ture within each cell a sinusoidal variation in the amplitudes of Re yy and Im , as
illustrated in Figure 10.7.
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Figure 10.7
Characteristic spatial variation of the real (or imaginary) part of the tight-binding wave function

(10.6).






GENERAL REMARKS ON THE TIGHT-BINDING METHOD

1. In cases of practical interest more than one atomic level appears in the ex-
pansion (10.7), leading to a 3 x 3 secular problem in the case of three p-levels, a
5 x 5 secular problem for five d-levels, etc. Figure 10.6, for example, shows the band
structure that emerges from a tight-binding calculation based on the 5-fold degenerate
atomic 3-d levels in nickel. The bands are plotted for three directions of symmetry
in the zone, each of which has its characteristic set of degeneracies.'?

2. A quite general feature of the tight-binding method is the relation between
bandwidth and the overlap integrals

7i;(R) = — Jdr ¢;*(r) AU(r)g;(r — R). (10.25)
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Figure 10.6

A tight-binding calculation of the 34 bands of nickel. (G. C. Fletcher, Proc. Phys. Soc. A65, 192
(1952).) Energies are given in units of &, = 1.349 eV, so the bands are about 2.7 volts wide. The
lines along which & is plotted are shown in Figure 10.5. Note the characteristic degeneracies
along I'X and I'L, and the absence of degeneracy along I'K. The great width of the bands indicates
the inadequacy of so elementary a treatment.




